5 research outputs found

    THERMAL ENERGY HARVESTING IN WIRELESS SENSOR NODES USED FOR CONDITION MONITORING

    Get PDF
    Presently, wireless sensor notes (WSN) are widely investigated and used in condition monitoring on industrial process monitoring and control, based on their inherent advantages of lower maintenance cost, easy installation and the ability to be installed in places not reached easily. However, current WSN based monitoring system still need dedicated power line or regular charging / replacing the batteries, which not only makes it difficult to deploy it in the fields but also degrades the operational reliability. This PhD research focuses on an investigation into energy harvesting approaches for powering WSN so as to develop a cost-effective, easy installation and reliable wireless measurement system for monitoring mission critical machinery such as multistage gearbox. Among various emerging energy harvest approaches such as vibrations, inductions, solar panels, thermal energy harvesting is deemed in this thesis to be the most promising one as almost all machines have frictional losses which manifest in terms of temperature changes and more convenient for integration as the heat sources can be close to wireless nodes. In the meantime, temperature based monitoring is adopted as its changes can be more sensitive to early health conditions of a machine when its tribological behaviour is starting to be degraded. Moreover, it has much less data output and more suitable for WSN application compared the mainstream vibration based monitoring techniques. Based on these two fundamental hypothesis, the research has been carried out according to two main milestones: the development of a thermoelectric harvesting (TEH) module and the evaluation of temperature based monitoring performances based on an industrial gearbox system. The first one involves the designing, fabricating and optimising the thermal EH module along with a WSN based temperature node and the second investigates the analysis methods to detect the temperature changes due to various faults associated with tribological mechanisms in the gearbox. In completing the first milestone, it has successfully developed a TEH module using cost-effective thermoelectric generator (TEG) devices and temperature gradient enhancement modules (heat sinks). Especially, the parameters such as their sizes and integration boundary conditions have been configured optimally by a proposed procedure based on the fine element (FE) analysis and the heat generation characteristics of machines to be monitored. The developed TEG analytic models and, FE models along with simulation study show that three different specifications of heat sinks with a Peltier TEG module are able to produce power that are consistently about 85% of the experimental values from offline tests, showing the good accuracy in predicting power output based on different applications and thus the reliability of the models proposed. And further investigation shows that a Peltier TEG module based that the thermal energy harvesting system produces is nearly 10 mW electricity from the monitored gearbox. This power is demonstrated sufficient to drive the WSN temperature node fabricated with low power consumption BLE microcontroller CC2650 sensor tags for monitoring continuously the temperature changes of the gearbox. Moreover, it has developed model based monitoring using multiple temperature measurements. The monitoring system allows two common faults oil shortages and mechanical misalignment to be detected and diagnosed, which demonstrates the specified performance of the self-power wireless temperature system for the purpose of condition monitoring

    Energy Harvesting Based Wireless Sensor Nodes for The Monitoring Temperature of Gearbox

    Get PDF
    Temperatures are effective indicators of the health of many ma-chines such as the wind turbine gearboxes, bearings, engines, etc. This paper pre-sents a novel wireless temperature sensor node powered by a thermal harvester for monitoring the status of gearboxes. A thermoelectric generator module (TEG) is optimized to harvest the electrical power from a heat source such as the gear-box undergoing such monitoring. The power generation from this method is ob-tained based on temperature gradients emanated by sandwiching the TEG be-tween the two aluminum plates. One plate is exposed to the heat source and has the role of a heat collector, whereas the other plate, mounted with a low profile heat-sink, acts as a heat spreader. The harvested power is then used to power a wireless temperature node for condition monitoring, resulting in a powerless and wireless monitoring system. To evaluate the system, an industrial gearbox is monitored by the designed temperature node. The node is fabricated using a TEG module; an LTC3108 DC-DC converter for boosting the voltage, a super-capacitor for energy storage and a CC2650 sensor tag for measuring the temperature of the gearbox. The temper-ature data is transferred via the Bluetooth Low Energy and then monitored using portable monitoring devices, such as a mobile phones. The results obtained show the system can provide a continuous monitoring of the temperature information

    Návrh a nastavení ochran vedení vn na rozvodně Ráječek 110/22 kV

    No full text
    Import 20/04/2006Prezenční výpůjčkaVŠB - Technická univerzita Ostrava. Fakulta elektrotechniky a informatiky. Katedra (451) elektroenergetik
    corecore